ПAmIBIA UПIVERSITY
OF SCIEПCE AПD TECHחOLOGY
FACULTY OF HEALTH AND APPLIED SCIENCES

DEPARTMENT OF NATURAL AND APPLIED SCIENCES

QUALIFICATION: BACHELOR OF SCIENCE	
QUALIFICATION CODE: O7BOSC	LEVEL: 6
COURSE NAME: INORGANIC CHEMISTRY	COURSE CODE: ICH602S
SESSION: JANUARY 2020	PAPER: THEORY
DURATION: 3 HOURS	MARKS: 100

SUPPLEMENTARY/SECOND OPPORTUNITY EXAMINATION QUESTION PAPER	
EXAMINER(S)	DR EUODIA HESS
MODERATOR:	PROF HABAUKA KWAAMBWA

INSTRUCTIONS
1. Answer ALL the questions.
2. Write clearly and neatly.
3. Number the answers clearly.
4. All written work must be done in blue or black ink and sketches can
be done in pencil.
5. No books, notes and other additional aids are allowed.

PERMISSIBLE MATERIALS

Non-programmable Calculators

ATTACHMENTS

List of Useful Constants
Periodic Table
THIS QUESTION PAPER CONSISTS OF 8 PAGES (Including this front page, list of useful constants and Periodic Table)

QUESTION 1: Multiple Choice Questions

- There are 20 multiple choice questions in this section. Each question carries 2 marks.
- Answer ALL questions by selecting the letter of the correct answer.
- Choose the best possible answer for each question, even if you think there is another possible answer that is not given.

1. How many electrons are there in the third shell (principal energy level) of the atom with atomic number 23?
A. 11
B. 8
C. 3
D. 10
2. How many electrons are there in the " p " orbitals of the last shell (principal energy level) of silicon, atomic number 14?
A. 4
B. 3
C. 0
D. 2
3. Which of the following is the correct order for electrons filling in orbitals?
A. $2 p, 3 s, 3 p, 3 d$
B. $3 p, 4 s, 3 d, 5 s$
C. $1 \mathrm{~s}, 2 \mathrm{~s}, 2 \mathrm{p}, 2 \mathrm{~d}$
D. $3 \mathrm{~s}, 3 \mathrm{p}, 4 \mathrm{~s}, 3 \mathrm{~d}$
4. A lithium atom has an atomic number of 3 and a mass of 7 . The number of electrons which it has in the 1st shell (principal energy level) is \qquad .
A. 7
B. 3
C. 1
D. 2
5. When $L i_{6.94}^{3}$ loses its single $2^{\text {nd }}$ shell (principal energy level) electron, its electronic structure resembles that \qquad .
A. Boron
B. Hydrogen
C. Helium
D. Neon
6. Bond created by overlapping of one modified orbit on another orbit is known as \qquad -.
A. Sigma bond
B. pi bond
C. Covalent bond
D. Dative bond
7. Molecular structure of SF_{6} is \qquad
A. octahedral
B. square planar
C. tetrahedral
D. trigonal bipyramidal
8. In $\mathrm{Al}_{2} \mathrm{Cl}_{6}$, the number of electron pairs donated by each chloride ion are \qquad .
A. 1
B. 2
C. 4
D. 6
9. Number of bonding pairs of electrons in water $\mathrm{H}_{2} \mathrm{O}$ is \qquad
A. 1
B. 2
C. 3
D. 4
10. What is the hybridisation of the carbon atoms in ethyne, $\mathrm{C}_{2} \mathrm{H}_{2}$?
A. $s p$
B. $s p^{2}$
C. $s p^{3}$
D. $s p^{3} d$
11. What is the definition of an $s p^{3}$ hybrid orbital?
A. It contains one s atomic orbital and three p atomic orbitals.
B. It contains one-third s atomic orbital and two-thirds p atomic orbitals.
C. It contains one-fifth s atomic orbital and four-fifths p atomic orbitals.
D. It contains one-quarter s atomic orbital and three-quarters p atomic orbitals
12. What is the formal charge of the oxygen atom in $\mathrm{H}_{2} \mathrm{O}$?
A. +3
B. +1
C. -2
D. -3
13. What is the major attraction between water molecules in the solid physical state?
A. Dipole-dipole
B. Hydrogen bonds
C. Electrostatic attraction
D. Physical entanglement of molecules
14. Which of the bonds, shown by the dash, has the greatest polarity?
A. $\mathrm{H}-\mathrm{Cl}$
B. $\mathrm{H}-\mathrm{OH}$
C. $\mathrm{H}-\mathrm{SH}$
D. $\mathrm{H}-\mathrm{NH}_{2}$
15. In which of the following compounds does ionic bonding predominate?
A. $\mathrm{NH}_{4} \mathrm{Cl}$
B. LiBr
C. CH_{4}
D. CO_{2}
16. Ions which are produced from ligands are
A. Cations
B. Anions
C. Complex ions
D. All of them
17. In a face centred cubic lattice, the number of nearest neighbours for a given lattice point is
A. 6
B. 4
C. 8
D. 12
18. The molecular geometry of $\mathrm{SO}_{3}{ }^{2-}$ as predicted by VESPR theory is \qquad .
A. bent
B. tetrahedral
C. square planar
D. triangular pyramidal
19. In a comparison with s-block elements, melting points of transition elements are
A. Higher
B. Lower
C. Same
D. Constant
20. Due to ligands' action of splitting colour of transition metal compound, this change occurs at
A. d-orbital
B. p-orbital
C. s-orbital
D. f-orbital

QUESTION 1:

1.1 Use the VSEPR model to predict the geometry of the following molecules and ions.
a) AsH_{3}
b) OF_{2}
c) AlCl_{4}
d) $\mathrm{I}_{3}-$
e) $\mathrm{C}_{2} \mathrm{H}_{4}$
1.2 Predict whether each of the following molecules has dipole moment and give an explanation for each.
a) BrCl
b) BF_{3} (trigonal planar)
c) $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (tetrahedral)
1.3 Describe the hybridization state of phosphorus in PBr_{5}.

QUESTION 2:

2.1 Which of the following can form hydrogen bonds in water and why?
$\mathrm{CH}_{3} \mathrm{OCH}_{3} ; \mathrm{CH}_{4} ; \mathrm{F} ; \mathrm{HCOOH} ; \mathrm{Na}^{+}$
2.2 When silver crystallizes, it forms face-centered cubic cells. The unit cell edge length is 409 pm . Calculate the density of silver.

QUESTION 3:

3.1 Write the systematic names of the following coordination compounds:
a) $\mathrm{Ni}(\mathrm{CO})_{4}$
b) NaAuF_{4}
c) $\mathrm{K}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]$
d) $\left[\mathrm{Cr}(\mathrm{en})_{3}\right] \mathrm{Cl}_{3}$
3.2 What are the geometries of the following two complexes?
(2)
a) $\left[\mathrm{AlCl}_{4}\right]^{-}$
b) $\left[\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}\right]^{+}$
3.3 Write the formula of each of the following coordination compounds:
a) Tetraammineplatinum(II) chloride
b) Sodium hexacyanoferrate(III)
c) Tris(ethylenediamine)platinum(IV) sulfate
d) Diamminesilver(I) nitrate
e) Potassium diaquadioxalatocobaltate(III)

QUESTION 4:

4.1 Calculate the amount of energy (in kJ) needed to heat 346 g of liquid water from $0^{\circ} \mathrm{C}$ to $182^{\circ} \mathrm{C}$. Assume that the specific heat of water is $4.184 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}$ over the entire liquid range and that the specific heat of steam is $1.99 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C}\left(\Delta \mathrm{H}_{\text {vap }}=40.79 \mathrm{~kJ} / \mathrm{mol}\right.$ for water $)$.
4.2 Gold crystallizes in cubic close packed structure (fcc) and has a density of $19.3 \mathrm{~g} / \mathrm{cm}^{3}$. Calculate the atomic radius of gold in picometers.

USEFUL CONSTANTS:


```
1 Pa }\cdot\mp@subsup{\textrm{m}}{}{3}=1\textrm{kPa}.\textrm{L}=1\textrm{N}\cdot\textrm{m}=1\textrm{J
1 atm = 101325 Pa = 760 mmHg= 760 torr
Avogadro's Number, N}\mp@subsup{N}{A}{}=6.022\times1\mp@subsup{0}{}{23}\mp@subsup{\textrm{mol}}{}{-1
Planck's constant, h=6.626 < 10-34 Js
Speed of light, c=2.998 \times 108 ms 
```

PERIODIC TABLE OF THE ELEMENTS

$\therefore \sim \text { 苗 苞 }$		∞＜	－	为䢔		$\stackrel{\infty}{\square}$
＝	の的商	二已管		N－家	$\infty \text { < }$	
$\stackrel{\square}{-}$	$\infty \bigcirc \stackrel{\text { ¢ }}{\text { ¢ }}$	$\bigcirc \sim_{0}$	戒枵兑	$\sim \sim$	交运家	on
\cdots	$-z \underset{\substack{0 \\ 0}}{\text { in }}$		$\begin{array}{lll} \infty & \infty & 0 \\ \hline \end{array}$	$\hat{i}_{i}^{n}=\frac{n}{n}$		
\pm	$\begin{array}{lll} 0 & \cup & \overrightarrow{i d} \\ \hline \end{array}$	$\pm \bar{\omega}$	ल		（ $\sim_{\text {¢ }}$	± 9
\cdots	$ص \stackrel{\text { ¢ }}{\stackrel{\circ}{\circ}}$	$\cdots \text { - } \begin{gathered} \stackrel{a}{n} \\ \stackrel{\sim}{0} \\ \hline \end{gathered}$				
		\sim	우N \sim_{0}^{∞}	－ 0	B Bran	옹웅
		$=$			R = 둔	三揑
		\bigcirc	$\underset{\sim}{\infty} \sim_{\sim}^{\sim}$	－ $0_{0}^{\text {a }}$	∞－\＃	옴
		σ	त $\mathrm{O}_{0}^{\text {O }}$		にネ	옹추응
		∞		险宫	Oo	o ,
		\checkmark	$\cdots \sum_{i}^{\infty} \underset{\sim}{0}$	\％©	N	으우엉
		\bullet	（L	Nr	为	08
		in	$\cdots \gg$	\dot{f}		응 응
		\checkmark	$\underset{N}{*} \underset{\sim}{\sim} \underset{\sim}{\infty}$	6	$N \text { 本莫 }$	区
		m		\hat{f}	$\sim \text { 둥 }$	Ois Sod
\sim		$\therefore \stackrel{00}{0} 0$		0	0	$\infty \text { 爾 }$
$- \text { - 国商 }$		二的这	On		$\sim \text { Bo ì ì }$	∞

57	58	59	60	61	62	63	64	65	66	67	68	69	70
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb
． 906	140.12	140.908	144	（145）	150.36	151.96	157.25	158.925	162.50	161.930	167.26	166.934	173.04

운
－
の 4
ロッ
0 の奐
万人言

Lanthanides：
Actinides：

